
Cycle-Based Algorithms for Multicommodity Network
Flow Problems with Separable Piecewise Convex Costs

Mauricio C. de Souza
Departamento de Engenharia de Produção, Universidade Federal de Minas Gerais,
Rua Espirito Santo 35, cep: 30160 - 030, Belo Horizonte, MG, Brasil

Philippe Mahey
Laboratoire LIMOS, CNRS-UMR6158 and Université Blaise Pascal, Clermont-Ferrand, France

Bernard Gendron
Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128,
Montréal, Québec, Canada

We present cycle-based algorithmic approaches to find
local minima of a nonconvex and nonsmooth model
for capacity expansion of a network supporting mul-
ticommodity flows. By exploiting complete optimality
conditions for local minima, we give the convergence
analysis of the negative-cost cycle canceling method.
The cycle canceling method is embedded in a tabu search
strategy to explore the solution space beyond the first
local optimum. Reaching a local optimum, the idea is
to accept a cost-increasing solution by pushing flow
around a positive-cost cycle, and then to make use of
the cycle cancelling method incorporating tabu search
memory structures to find high quality local optima.
Computational experiments on instances of the litera-
ture show that the tabu search algorithm can significantly
improve feasible solutions obtained by the local optimiza-
tion procedure, and it outperforms the capacity and flow
assignment heuristic in terms of solution quality. © 2007
Wiley Periodicals, Inc. NETWORKS, Vol. 51(2), 133–141 2008

Keywords: multicommodity flow problems; cycle canceling
algorithms; tabu search.

1. INTRODUCTION

In this study, we consider a multicommodity network flow
problem with piecewise convex arc cost functions, introduced
by Luna and Mahey [15] to cope with capacity expansion
problems in the optimal design of communications networks.

Received June 2005; accepted March 2007
Correspondence to: P. Mahey; e-mail: philippe.mahey@isima.fr
Contract grant sponsor: CNPQ grant; Contract grant number: 301603/2006-5
DOI 10.1002/net.20208
Published online 14 December 2007 in Wiley InterScience (www.
interscience.wiley.com).
© 2007 Wiley Periodicals, Inc.

The problem is an extension of the classical flow assign-
ment problem. Given a directed capacitated network with a
traffic requirement matrix between some origin-destination
pairs, the flow assignment problem consists of finding a fea-
sible routing, which minimizes the average delay induced
by the waiting queues at the switching nodes of the net-
work. This delay is generally approximated by a separable
smooth convex objective function (see [9] for example).
The resulting convex cost multicommodity flow problem
can be solved by several efficient algorithms [21]. In the
problem we consider, we wish to decide which arc capac-
ities should be expanded to further reduce the average delay
and improve the so-called Quality of Service (QoS) of the
resulting network. As expanding an arc induces a fixed cost,
the problem results in finding a trade-off between invest-
ment and routing costs. Luna and Mahey [15] showed that
the corresponding multicommodity flow problem can be
modelled by using continuous piecewise convex cost func-
tions on each arc, resulting in a nonconvex, nonsmooth,
objective function. The problem can also be modelled as
a mixed-integer nonlinear program [18], and can be seen
as a particular case of the capacity and flow assignment
problem (CFA), introduced by Gerla and Kleinrock [9]. To
solve this problem, researchers have either tried to decou-
ple the difficulty by alternately solving the capacity and
the flow assignment problems (the so-called CA-FA pro-
cedure [6, 7, 10]), or used exact approaches like Benders
decomposition [16].

In this study, we propose an efficient heuristic method
based on the iterative solution of convex cost multicommod-
ity flow subproblems, embedded in a tabu search framework.
The method is based on the classical cycle canceling approach
for network flows [14]. Ouorou and Mahey [20] derived

NETWORKS—2008—DOI 10.1002/net

an efficient algorithm for smooth convex multicommodity
flow problems by canceling minimal mean cycles. They
have shown however that the cycle canceling method does
not apply to nonsmooth convex cases. For the problem
we consider, however, Mahey and Souza [19] proved that
the absence of negative-cost cycles is necessary and suf-
ficient for local optimality under the assumption that at
breakpoints the marginal cost decreases, as observed when
capacity expansion occurs. By exploiting this result, we
give in the present work a convergence analysis of the
negative-cost cycle canceling method. We also propose a
tabu search strategy to explore the solution space beyond
the first local optimum found by the negative-cost cycle
canceling method. The idea is to accept a cost increasing
solution pushing flow around a positive-cost cycle, using a
tabu short-term memory in an attempt to find a better local
optimum.

Tabu search methods have been proposed for another diffi-
cult, nonconvex, multicommodity network flow problem, the
fixed-charge network design problem, in which the linear cost
function on each arc is discontinuous, having a unique break-
point at the origin. In Crainic et al. [4], simplex pivot-type
moves and column generation are combined in a tabu search
framework to explore the space of continuous flow variables,
while evaluating the exact objective function. Ghamlouche
et al. [11] proposed a different tabu search algorithm, where
each new solution is obtained by pushing flows along cycles.
As we are dealing with a nonlinear continuous cost function
on each arc, the neighborhood definition and the strategy
to guide the search differentiate our work from these other
related contributions.

This study is organized as follows. In the next section,
we present the problem and the negative-cost cycle free
local optimality condition. Section 3 is dedicated to the
negative-cost cycle canceling method and its convergence
analysis. In Section 4, we propose a tabu search algorithm
to explore the solution space beyond the first local opti-
mum. We present computational experiments in Section 5.
Concluding remarks and extensions are discussed in the last
section.

2. PROBLEM DESCRIPTION

The underlying network topology is represented by a
digraph G = (V , A) with m nodes and n arcs. Traffic between
any pair of nodes is treated as a separate commodity k with
an origin-destination pair (sk , tk) and a demand requirement
rk ≥ 0. We have then K flow vectors x1, . . . , xk , . . . , xK of
R

n associated with the K commodities to be transported
through G. The total flow on arc j is denoted by xj. The
flow on arc j associated with commodity k is denoted xkj.
Let M be the m × n node-arc incidence matrix of G, and
let bk ∈ R

m be the vector with all components 0 except
bk(sk) = −bk(tk) = 1.

As we are concerned with capacity expansion, we assume
each arc j ∈ A has an installed capacity c0j and is expand-
able to a capacity c1j > c0j at a given fixed cost πj. Luna

and Mahey [15] proposed the following continuous model,
denoted in the sequel by (CCE):

min
n∑

j=1

fj(xj) = min{�(c0j, xj), �(c1j, xj) + πj} (1)

s.t.
K∑

k=1

xkj = xj, ∀j ∈ A, (2)

Mxk = rkbk , k = 1, . . . , K , (3)

xj ≤ c1j, ∀j ∈ A, (4)

xj, xkj ≥ 0, ∀j ∈ A, k = 1, . . . , K . (5)

In this formulation, the individual arc congestion functions
� : C ×R → R, where C is a finite set of positive capacities,
satisfy the following properties:

1. �(c, ·) is strictly convex, monotone increasing on [0, c);
2. �(c, ·) is continuously derivable on (0, c) and

∂�(c1, x)/∂x < ∂�(c0, x)/∂x for any 0 < x < c0 < c1;
∂�+(c1, 0)/∂x < ∂�+(c0, 0)/∂x, where ∂�+ is
the right partial derivative;

3. �(c, 0) = 0;
4. �(c, x) → +∞ if x ↑ c.

The last property means that � acts as a barrier that prevents
the solution from approaching the capacity when minimizing
(1). A well-known example of such a congestion function is
Kleinrock’s delay function �(c, x) = x

c−x , which expresses
the average delay of traffic x on an arc with capacity c
assuming a Poisson process [3].

The objective function (1) of CCE is continuous but
nonconvex and nonsmooth at the breakpoint γjc0j, 0 <

γj < 1. The investment fixed cost πj and the thres-
hold γjc0j at which expansion occurs are related by πj =
�(c0j, γjc0j) − �(c1j, γjc0j). Constraints (2)–(5) define the
classical node-arc formulation of multicommodity network
flow problems [8,21]. Figure 1 shows by a solid line the non-
convex resulting arc cost function of CCE. As can be observed
in the figure, γjc0j is the breakpoint beyond which it becomes
advantageous to pay for expansion.

Let S be the set of feasible solutions defined by constraints
(2)–(5). CCE is a piecewise convex multicommodity flow
model since the objective function is convex on any subset of
S where the flow on each arc j is restricted either to [0, γjc0j]
or to [γjc0j, c1j]. The consequence is that there exists at most
one local optimum in any subset of S where the flow on each
arc j is restricted either to [0, γjc0j] or to [γjc0j, c1j]. This is the
main motivation behind the development of the present work.

2.1. Neighborhood Definition

For any feasible solution x∗ of CCE, we define:

A0 = {
j ∈ A|x∗

j ∈ [0, γjc0j)
}

A1 = {
j ∈ A|x∗

j ∈ (γjc0j, c1j)
}

A01 = {
j ∈ A|x∗

j = γjc0j
}
.

134 NETWORKS—2008—DOI 10.1002/net

FIG. 1. The integrated function of congestion and expansion costs.

By letting g = |A01|, we can define 2g subsets of the feasible
set S by constraining xj to [0, γjc0j] (resp. xj to [γjc0j, c1j])
for j ∈ A0 (resp. j ∈ A1) and by alternately constraining xj

to [0, γjc0j] or to [γjc0j, c1j] for j ∈ A01. The union of these
subsets defines the neighborhood N(x∗) ⊆ S of x∗. Note that
x∗ belongs to each of the 2g subsets, and that these subsets
have disjoint interior points.

2.2. Local Optimality Conditions

Mahey and Souza [19] established that the absence of
negative-cost cycles is a necessary and sufficient condition
for local optimality of CCE. Let x be a feasible solution of
CCE. Given a cycle � and a sense of circulation, we will call
� k-feasible if it presents a strictly positive residual, i.e., if
we can augment the commodity flow xkj on the forward arcs
(denoted by �+) and reduce it on the backward arcs (denoted
by �−). Its cost is given by

λ(x, �) =
∑
j∈�+

f ′+
j (xj) −

∑
j∈�−

f ′−
j (xj)

where f ′+
j (xj) (resp. f ′−

j (xj)) is the right (resp. left) par-
tial derivative of the arc cost function fj. Then we have the
following result.

Local optimality conditions [19]: A feasible solution x∗ is
a local optimum of CCE if and only if, for all commodities
k = 1, . . . , K , there does not exist any k-feasible cycle with
negative cost.

We remark that this result cannot be extended to the con-
vex nonsmooth case, as already observed in [20]. It works for
the piecewise convex model CCE because, at the breakpoints,
f ′+
j (γjc0j) < f ′−

j (γjc0j). This is the key characteristic distin-
guishing expansion problems, where the user is willing to
pay a fixed expansion cost for a smaller marginal operational
cost.

3. CYCLE CANCELING ALGORITHM

In this section, we describe the cycle canceling algorithm
(CCA), which is derived from the above local optimality con-
ditions. As in most cycle canceling algorithms, each iteration
of CCA is divided in two steps: find a negative-cost cycle,
and cancel the cycle by pushing flow on it. Two potential
difficulties must be addressed:

• The multicommodity flow structure: This factor does not influ-
ence the procedure as each commodity is treated one at a
time, i.e., the marginal costs are computed with respect to the
total arc flow, but only the flow of one chosen commodity is
updated.

• The nonlinear and nonsmooth cost function: Left and right
derivatives of the arc cost function play the role of the arc costs,
as we show how to compute an approximate local minimum
of the one-dimensional cost function associated with the cycle
canceling step.

3.1. Cycle-Finding Step

As the computation of the most negative-cost cycle is
NP-hard, we follow an old idea of Weintraub [24] further
improved by Barahona and Tardos [2], where a sequence
of assignment subproblems is used to find the largest pos-
sible improvement in the objective function by canceling
a family of node-disjoint cycles. Indeed, a feasible assign-
ment of the network nodes to themselves corresponds to a set
of node-disjoint cycles (eventually including self-loops) and
computing the assignment with minimal cost can be done in
polynomial time. Let Ak be the set of arcs that carry some
positive flow of commodity k. To obtain the most negative
set of disjoint k-feasible cycles, we can set the cost ak

iw of
assigning node i to node w to

ak
iw =

f ′+
j (xj), if j = (i, w) ∈ Ak ,
−f ′−

j (xj), if j = (w, i) ∈ Ak ,
0 if i = w,
+∞ otherwise,

(6)

where x is the current feasible multicommodity flow. Since
the loops i �→ i do not correspond to cycles and have cost
zero, either there exists an assignment with negative cost or
there is no negative-cost k-feasible cycle. Observe too that
the total cost of the k-feasible disjoint cycles is at least as
negative as the cost of the most negative k-feasible cycle (the
one which is not polynomially computable). But it is not the
steepest descent direction as that one could involve several
nondisjoint cycles. Finally, as the cycles obtained through
the assignment subproblem are node-disjoint, we can cancel
them sequentially in any order.

3.2. Cycle-Canceling Step

The k-canceling step augments (respectively, reduces) the
k-th commodity flow on the forward (respectively, backward)
arcs of the cycle � so that the function φθ (α) = ∑

j∈�+ fj(xj+
α) + ∑

j∈�− fj(xj − α) is minimized. But the step size α can

NETWORKS—2008—DOI 10.1002/net 135

be smaller if some backward arc flow reaches its lower bound,
i.e., xk

j −α = 0. The line search will then be further restricted
to keep the step within a subregion where the function φθ is
convex, i.e., a subregion as defined in Section 2 where the
flow on each arc in A01 ∩ �− is restricted to [0, γjc0j], and
the flow on each arc in A01 ∩ �+ is restricted to [γjc0j, c1j]
(if there are other arcs in A01 which are not in the cycle, it
is indifferent to restrict their flow either to [0, γjc0j] or to
[γjc0j, c1j]). Let ᾱ be the largest allowed value for the step
size, i.e., ᾱ = minj∈� αj where, for each j, αj is computed as
follows

αj =

γjc0j − xj, if j ∈ �+ and xj < γjc0j

min
{
xk

j , xj − γjc0j
}
, if j ∈ �− and xj > γjc0j

xk
j , if j ∈ �− and xj ≤ γjc0j

The canceling step can be computed by an efficient line
search on the interval [0, ᾱ], i.e., for instance, by a bisection
strategy, testing the sign of φ′

θ (α) at the midpoint of the search
interval and reducing the size of the interval by a factor 2 until
a given tolerance is attained [5]. Let α∗ be the optimal value
of the step; then we can update the flow of the k-th commodity
as follows:

xk := xk + α∗θ , (7)

where θ in the update formula (7) denotes the incidence vector
of cycle �.

We can observe that, in many cases, a larger step can be
performed when one reaches the breakpoint value of some
arc flow in the cycle. Indeed, suppose that xj < γjc0j and that
the flow augments until xj + α = γjc0j with λ(x + α, �) still
negative. Then, as f ′−

j (xj + α) > f ′+
j (xj + α), we can still

augment the flow in the interval [γjc0j, c1j] corresponding to
the adjacent subregion. The same situation is obtained for arcs
where the breakpoint value is crossed from above (xj > γjc0j

and j is a reverse arc in the cycle). As a consequence, the
one-dimensional search on the negative cycle can be directly
performed on the whole intervals [0, c1j], even if the function
is nonconvex and nonsmooth.

3.3. Convergence Analysis

We now analyze the convergence of CCA using basic prop-
erties of descent algorithms. Observe that a canceling-step
starts with a set
 of k-feasible disjoint cycles (for a fixed
commodity k) with |
| = L. As the cycles are disjoint, the
search direction is the indicator vector of the L disjoint cycles,
i.e.,

[θ
]e =

+1, if e ∈ �+
l , for some l

−1, if e ∈ �−
l , for some l

0, if e /∈ �l, ∀l

It is thus a feasible circulation for the k-th commodity. The
single modification with respect to what was stated in the
previous section is that we will use the same step size for all
cycles in the bundle of disjoint cycles found by the cycle-
finding procedure of Section 3.1. This is used here only for

the sake of simplification of the convergence analysis. As the
cycles are disjoint, the canceling step will still be better if
each cycle is canceled separately (thus with different optimal
step sizes).

At a given feasible multicommodity flow x, let φ(α) =
f (x + αθ
), where α is the step size applied to all cycles
in the bundle
, be the one-dimensional function associated
with the search direction. Observe that φ(α) = ∑

j/∈
 fj(xj)+∑L
l=1 φθl (α), using the individual cycle functions φθl defined

in Section 3.2.
In the following lemma, the steepest descent direction will

be denoted abusively by −∇f (x). Observe that it is defined
here with respect to a single commodity, all other commodity
flows being kept fixed. Its cost is thus equal to −‖∇f (x)‖2.
We first establish that θ
 is a sufficient descent direction in
the following sense:

Lemma 1. The search direction associated with the optimal
set of disjoint cycles is a sufficient descent direction in the
sense that φ′(0) ≤ −τ0‖∇f (x)‖2, where 0 < τ0 < 1.

Proof. The steepest descent direction corresponds to the
most negative cost of any circulation added to x. It is well
known [1] that any circulation can be supported by at most
m − n + 1 feasible cycles. On the other hand, the cost of
an optimal set of disjoint cycles is at least as negative as
the cost of the most negative single cycle denoted by �̄.
Then, φ′(0) ≤ λ(x, �̄). Completing the overestimation (for
negative numbers), we have finally:

−‖∇f (x)‖2 ≤ φ′(0) ≤ λ(x, �̄) ≤ −‖∇f (x)‖2

m − n + 1

The result is thus proved by setting τ0 = 1
m−n+1 . ■

Definition 1. The step size α, in other words the value of
the circulation which is pushed on every cycle �l , is called
admissible if it satisfies the following Armijo condition:

f (x + αθ
) − f (x) ≤ τ1αφ′(0) (8)

where τ1 is a positive number less than 1/2.

To understand how the individual bound constraints asso-
ciated with the current subregion do not perturb the choice
of an admissible step, we can observe that, when an arc flow
reaches one of its bounds, the cycle is canceled and the func-
tion has strictly decreased (indeed, this point only concerns
the case of a decreasing arc flow reaching the value zero, as
we have seen that the breakpoint value can never be a stop-
ping value). Thus, these cycle canceling steps do not affect
the convergence of the Armijo iterations, as either there are
infinitely many Armijo steps or there are no more negative-
cost cycles. A practical way to estimate a good step size is to
test condition (8) for α = 1, 1/2, 1/4, . . . and take the largest
value bounded by the intervals [0, c1j].
Theorem 1. Suppose there exists a strictly feasible mul-
ticommodity solution to the problem with capacities c1j for

136 NETWORKS—2008—DOI 10.1002/net

all j ∈ A. Then the sequence generated by algorithm CCA
with feasible step sizes converges to a point which satisfies
the local optimality conditions of CCE.

Proof. The objective function is continuously differ-
entiable on the whole intervals. Then, as the direction is
sufficiently decreasing by Lemma 1 and the Armijo condition
is always satisfied when the step is not limited to the inter-
val bounds, it is a well-known result (see for instance [5])
that the method will converge and each limit point is such
that the gradient of f is zero or, equivalently, there are no
negative-cost k-feasible cycles for all commodities. ■

Observe that, in the original paper by Weintraub [24],
many assignment subproblems are solved at each step to
approximate the most helpful cycle, in the sense of mini-
mizing the decrease of the objective function after the flow
update. This choice was exploited later by Barahona and
Tardos [2] to obtain a polynomial algorithm in the linear
case. Our choice is different as it relies on the idea of an
approximation of the steepest-descent direction.

4. TABU SEARCH METHOD

A local optimum of CCE can be obtained by applying
CCA to a feasible solution. We propose a tabu search algo-
rithm [12, 13] to explore the solution space beyond the first
local optimum. For this purpose, we exploit the piecewise
convex nature of the objective function. If we consider a
local optimum x∗ and its neighborhood N(x∗), as defined
in Section 2.1, we note that it is useless to perturb x∗ towards
some other feasible solution x′ in the interior of N(x∗), since
CCA applied to x′ would lead back to x∗ in the descent
step. Therefore, we need to drive the search not to any
other feasible solution, but rather to a feasible solution in
the neighborhood boundary of the current local optimum.

Each iteration of our tabu search algorithm consists of two
distinct phases. In the first phase, the search is driven from
a local optimum x∗ to a feasible solution x′ on the bound-
ary of N(x∗). To achieve that, we bring the flow on an arc
j to its breakpoint, γjc0j, by pushing flow around positive-
cost cycles. During this phase, we accept a cost increasing
solution. In the second phase, CCA is applied to x′. By using
a short-term memory structure, we ensure that CCA, when
applied to x′, leads the descent to a local optimum x∗′ such
that N(x∗′) and N(x∗) have disjoint interior points. We also
make use of a medium-term memory to guide the search in the
first phase of an iteration. We now present how we perform
the first phase of each iteration of the tabu search method, and
then describe the memory structures used by the algorithm.

4.1. Driving the Search to the Current
Neighborhood Boundary

To begin each iteration, we first have to choose an arc j′
such that x∗

j′ �= γj′c0j′ . Then we must select a commodity k for
which we modify the routing. Finally, we have to determine

FIG. 2. Arc choices in order to intensify the search.

a k-feasible cycle along which we push flow until the value
of x∗

j′ becomes γj′c0j′ .
The choice of arc j′ reflects whether one intends to inten-

sify or to diversify the search through the solution space.
We are interested primarily in intensifying the search. If we
denote by intN(x∗) the interior of N(x∗), we choose arc j′ to
drive the search to a point x′ in the boundary of N(x∗), so
that intN(x∗) ∩ intN(x′) �= ∅. This implies that, by pushing
flow along positive-cost cycles, we should not allow the flow
on any arc to cross its breakpoint. Thus, we should maintain
the condition that, for j = 1, . . . , n, x′

j ≤ γjc0j (respectively,
x′

j ≥ γjc0j) if and only if x∗
j ≤ γjc0j (respectively, x∗

j ≥ γjc0j).
Figure 2 shows a 2-dimensional example. Let us consider

a graph with two nodes, an origin-destination pair of a com-
modity with demand r, and two different arcs, 1 and 2, both
with the same tail and head. The feasible solution set is then
S = {(x1, x2) ∈ [0, c11] × [0, c12]|x1 + x2 = r}. Suppose that
x∗ is a local optimum of such an instance, with N(x∗) = C1

where C1 = {x ∈ S|x1 ∈ [0, γ c01] and x2 ∈ [γ c02, c12]}.
We intensify the search if we choose arc j′ = 1 to bring the
flow to γ c01. This choice leads to x′, with N(x′) = C1 ∪ C2

where C2 = {x ∈ S|x1 ∈ [γ c01, c11] and x2 ∈ [γ c02, c12]},
and indeed intN(x∗) ∩ intN(x′) �= ∅. Otherwise, the choice
of arc j′ = 2 leads to x′′, with N(x′′) = C2 ∪ C3 where
C3 = {x ∈ S | x1 ∈ [γ c01, c11] and x2 ∈ [0, γ c02]}, and we
do not intensify the search since intN(x∗) ∩ intN(x′′) = ∅
(note that the flow on arc j = 1 has crossed its breakpoint).

The natural choice is to bring the flow on arc j1 =
arg minj∈A{|x∗

j − γjc0j| | x∗
j �= γjc0j} to γj1 c0j1 . Since it is not

known beforehand if actually there exists a feasible solution
in which xj1 = γj1 c0j1 , we perform a trial-and-error proce-
dure in an attempt to obtain such a feasible solution. The
trial-and-error procedure described below is applied to the
sequence of arcs such that x∗

j �= γjc0j, sorted in nondecreas-
ing order of |x∗

j −γjc0j|, until either the flow on an arc has been
brought to its breakpoint, or the arc list has been traversed
without success. The algorithm is stopped in the latter case.
We describe this procedure in the following subsection.

NETWORKS—2008—DOI 10.1002/net 137

4.1.1. Trial-and-Error Procedure. Suppose we are given
a local optimum x∗ and an arc j such that x∗

j > γjc0j. We
bring to γjc0j the flow on j if we find both (i) a commodity k
such that x∗

kj ≥ |x∗
j − γjc0j|, and (ii) a k-feasible cycle � with

j ∈ �− that supports pushing an amount of |x∗
j −γjc0j|units of

flow on it. This yields the following trial-and-error procedure,
which iterates by pushing flow on k-feasible cycles in which
j is backward until x∗

j decreases to the value γjc0j. The case
x∗

j < γjc0j is handled in the same way, except that j must be
a forward arc in �.

1. Let K ′ be the set of candidate commodities. Set σ ←
|x∗

j − γjc0j|.
2. If K ′ = ∅, stop – there is no feasible solution with xj =

γjc0j . Otherwise, choose k ∈ K ′ and set K ′ ← K ′ − {k}.
3. While σ > 0 and there exists a k-feasible cycle � in

which j ∈ �− do:
Push along � the largest amount of flow α ∈
(0, σ] that � supports.
Set σ ← σ − α.

4. If σ > 0, return to Step 2. Otherwise, stop—a feasible
solution with xj = γjc0j is obtained.

The set K ′, in Step 1, contains the commodities for which
a k-feasible cycle having j as one of its arcs might be found.
In case x∗

j > γjc0j, the procedure starts with K ′ being the
set of commodities such that x∗

kj > 0. In Step 2, we choose
a commodity k in nonincreasing order of x∗

kj, in a effort to
perform a single iteration of the trial-and-error procedure. In
case x∗

j < γjc0j, the procedure starts with K ′ being the set
of commodities such that x∗

kj < rk . Note, however, that a
commodity currently routed through arc j can become even
more attractive for this commodity, since the marginal cost
for augmenting flow on j decreases when reaching γjc0j. It
can as well become attractive to route through j a commodity
that passes by an extremity of arc j. For these reasons, we
choose first, in Step 2, commodities such that 0 < x∗

kj ≤
rk − |x∗

j − γjc0j| or x∗
kj′ > 0 for an arc j′ in the adjacency list

of an extremity of j. Step 3 of the trial-and-error procedure
needs a routine that either finds a k-feasible cycle containing
arc j, or returns the information that such a cycle does not
exist. We describe this procedure in the next subsection.

4.1.2. Finding Positive-Cost k-Feasible Cycles. Our pro-
cedure to find a positive-cost k-feasible cycle containing a
chosen arc j is based on breadth-first search. We make use,
for each node, of two predecessor indices, pb and pf , in order
to trace respectively the backward and forward arcs of the
k-feasible cycle. We use a boolean variable, cycle_found, that
indicates if there exists, or not, a k-feasible cycle. Let u and v
designate respectively the tail and head of arc j. Consider for
instance the case x∗

j > γjc0j (the case x∗
j < γjc0j is slightly

different). Step 3 of the trial-and-error procedure calls the
following routine:

1. Set pb(i) ← 0 and pf (i) ← 0 for all i ∈ V . Set q ← v
and pb(q) ← u.

2. While q �= tk do:

Scan the adjacency list Adjq of node q.
Let l be the arc in Adjq carrying the largest
amount of flow of commodity k.
Let w designate the head of arc l. Set pb(w) ← q
and q ← w.

3. Perform a reverse breadth-first search from u considering
only arcs carrying a strictly positive amount of flow of
commodity k. Label the nodes visited (u included), and
let L be the set of such nodes.

4. Set cycle_found ← false.
5. While L �= ∅ and cycle_found = false do:

Choose a node q ∈ L and set L ← L − {q}.
Perform a breadth-first search from q on arcs
having a residual capacity (c1j − xj > ε > 0),
and such that their heads are neither visited nor
labeled.
Update pf (w) for the nodes w being discovered.
If pb(w) �= 0, set cycle_found ← true and stop
the search - a k-feasible cycle with extremities q
and w has been found.

6. If cycle_found = true, compute the largest amount of
flow α ∈ (0, σ] that it supports by making use of the
predecessor indices.

4.1.3. Complexity Analysis. We now discuss the worst-
case complexity of the trial-and-error procedure. Every com-
modity k might be investigated in trying to bring the flow
on a given arc j to γjc0j. Given two flow vectors x′

k and x′′
k

of a commodity k, their difference, � = x′
k − x′′

k , can be
expressed as the summation of at most (|A|−|V |+1) cycles.
The procedure to find a positive-cost k-feasible cycle has the
same complexity as breadth-first search, O(|A|) [1]. Thus, the
complexity of the whole procedure is O(|A|3K).

4.2. Memory Structures

We make use of two memory structures: a medium-term
memory, which remains active during a fixed number of iter-
ations, and a short-term memory, which acts within the local
search phase of any single iteration.

The medium-term memory imposes restrictions on the
selection of an arc to guide the search in the first phase of
each iteration. Because it can happen that the local optimiza-
tion only slightly deviates the flow on an arc j that has just
been brought to γjc0j, such an arc should be prevented from
being chosen in the first phase of the subsequent iteration.

FIG. 3. Network used to generate the first group of test instances.

138 NETWORKS—2008—DOI 10.1002/net

TABLE 1. Results for the homogeneous case.

Reductions (%)

r c0 c1 IS CA-FA CCA TB_CCA r(IS) r(CA-FA) r(CCA) LB

1 4 12 28.22 26.82 26.53 25.64 12.1 5.5 4.5 21.47
5 15 21.84 21.27 21.27 20.23 9.5 6.1 6.1 17.08
4 16 28.07 24.76 24.23 23.70 26.0 6.3 3.2 16.84
5 20 21.25 19.58 19.40 19.21 15.2 2.7 1.4 13.45

2 4 12 53.95 49.95 49.33 48.49 12.6 3.4 2.0 43.59
5 15 43.40 39.77 39.77 38.78 13.3 2.8 2.8 34.63
4 16 49.17 44.93 44.50 40.91 24.5 11.9 10.6 33.77
5 20 39.76 37.89 37.89 34.73 18.6 11.7 11.7 27.00

Otherwise, the search would be trapped between two border-
ing subsets. The medium-term memory has thus as attribute
the arc j for which the flow has been brought to γjc0j, which
is kept tabu for tabu tenure iterations.

The short-term memory controls the local search in the
second phase of an iteration, which consists of applying CCA
from the solution x′ obtained in the first phase. The short-
term memory prevents the algorithm from going back to the
recently visited local optimum x∗, avoiding the search being
trapped in N(x∗). Let j′ be the arc for which flow has been
brought to γj′c0j′ in the first phase. If, during this phase, we
have increased (respectively, decreased) the value of x∗

j′ , we
classify as tabu the act of canceling a negative-cost cycle
where j′ is a backward (respectively, forward) arc with a cur-
rent flow equal to γj′c0j′ . The short-term memory tabu status
is kept active during the whole local optimization phase.

5. NUMERICAL EXPERIMENTS

We conducted numerical experiments on three different
approaches to solve CCE: the classical capacity assignment-
flow assignment (CA-FA) method [9], the cycle canceling
(CCA) method described in Section 3, and the tabu search
algorithm (TB_CCA) proposed in Section 4.

The CA-FA algorithm alternates between a capacity
assignment phase, with fixed routing, and a flow assign-
ment phase, with fixed arc capacities, until no further
improvements are possible. The capacity assignment phase
is solved by inspection, while the routing phase is a convex

multicommodity network flow problem. To apply the CA-FA
algorithm to CCE, we must decide which one of the two
capacities, c0j or c1j, to assign whenever an arc j is at the
breakpoint, i.e., xj = γjc0j. Consequently, we have one of the
two “active” congestion functions, �(c0j, xj) or �(c1j, xj),
on arc j in the subsequent routing phase. Note that CA-FA
does not necessarily stop at a local minimum of CCE, since
it does not take into account that γjc0j is a point of discon-
tinuity of the arc cost function derivative f ′

j . As an example,
assume we are given a feasible solution x∗ in which an arc j is
at the breakpoint. The two subsets composing the neighbor-
hood N(x∗) are C1 and C2 associated, respectively, with the
intervals [0, γjc0j] and [γjc0j, c1j). Suppose we decide, with-
out loss of generality, to fix the capacity of arc j to its smallest
value c0j. If the routing does not change in the following flow
assignment phase, then the algorithm stops. Since �(c0j, xj)

has been considered as the arc cost function on j, we can
conclude that the local optimality conditions are satisfied for
the subset C1, but we cannot assess the optimality conditions
for the subset C2. Indeed, there might exist a negative-cost
k-feasible cycle in which j is a forward arc, and x∗ is not
locally optimal for C2.

We use the convex approximation proposed by Luna and
Mahey [15] to generate lower bounds, as well as initial solu-
tions for CA-FA and CCA. The proximal decomposition
method described in Mahey et al. [17] is used to solve the
convex multicommodity flow problems found in the initial
convex approximation and in the routing phases of CA-FA.
The solutions obtained by CCA are in turn initial solutions

TABLE 2. Results for the heterogeneous case.

Reductions (%)

r c0 c1 IS CA-FA CCA TB_CCA r(IS) r(CA-FA) r(CCA) LB

[0.5,2] 4 12 32.51 30.54 30.54 29.51 12.0 4.2 4.2 25.00
5 15 25.57 24.74 24.74 23.30 11.4 7.3 7.3 19.91
4 16 31.46 28.17 28.06 26.43 25.0 8.9 8.4 19.56
5 20 25.42 23.98 23.68 21.92 22.4 13.2 11.3 15.63

[0.5,4] 4 12 51.45 48.21 48.21 47.04 10.2 2.7 2.7 43.26
5 15 42.74 40.93 40.93 39.12 10.6 5.3 5.3 34.16
4 16 44.79 43.23 42.57 40.63 12.5 7.8 5.8 33.26
5 20 39.23 38.40 37.59 36.50 10.3 7.2 4.0 26.58

NETWORKS—2008—DOI 10.1002/net 139

TABLE 3. Network characteristics of the second group of instances.

Instance Topology |V | |E| K

att AT&T Worldnet backbone 90 274 272
fr250 Frame-relay 60 688 250
fr500 Frame-relay 60 906 500
hier50 2-level hierarchical 50 148 245

for TB_CCA. The tabu tenure for the medium-term mem-
ory is an integer randomly generated in the interval [1, 5].
All the algorithms involved in our numerical experiments
were implemented in C and performed on a PC Pentium III
700 MHz with 512 Mbytes of RAM memory.

Two groups of test instances were used. The first group is
derived from a real network introduced by Mahey et al. [17],
also used by Ouorou and Mahey [20]. Figure 3 shows this
network, provided by the Centre National d’Études des
Télécommunications, today France Télécom R&D. It has
19 nodes, 68 arcs (two arcs, one in each direction, for each pair
of nodes directly connected), and 30 origin-destination pairs
(each one treated as a different commodity). Installed capac-
ities all have the same value c0, and expansion to a capacity
c1 is possible for every arc in the network. The parameter
γ is set to 50% for every arc in the network, meaning that
the expansion on an arc j occurs when the flow xj reaches
half of the installed capacity. The arc congestion costs are
given by Kleinrock’s function �(c, xj) = xj

c−xj
, for a capacity

value c and an arc j. To obtain different instances from this
network, we vary the dimensional aspects, such as the ratio
c1/c0, and the traffic load aspects, such as the heterogene-
ity of the demand requirements and its ratio over installed
capacities.

Tables 1 and 2 display the results for the homogeneous and
the heterogeneous demand requirements scenarios, respec-
tively, for the network of Figure 3. We present problem
characteristics in the first three columns (demand r, installed
capacities c0, and capacities for expansion c1). In Table 1, the
traffic demands have the values indicated, while in Table 2,
the traffic demand between each origin-destination pair is
a value taken at random from the interval indicated. We
then report in the fourth through seventh columns the objec-
tive function values of the following solutions: the initial
solution IS obtained by the convex approximation [15], the
solution obtained by CA-FA [9], the solution obtained by
CCA, and the best solution found by TB_CCA. In the next

three columns, we show the relative reductions provided by
TB_CCA with respect to the lower bound over the three other
tested methods, i.e., r(X) = X − TB_CCA

LB %, where X is the
objective function value of IS or of the solutions obtained by
CA-FA or CCA, depending upon the case. In the last col-
umn, we report the lower bound LB given by the convex
approximation [15].

In 9 out of 16 instances, solutions provided by CCA are
better than the ones provided by CA-FA. It is important to
point out that CCA performs particularly better than CA-
FA when initial solutions have some arcs at the breakpoint.
We relate this experimental observation to the fact that only
CCA uses the information about the different right and left
derivatives at the breakpoint. This happened in the four data
configurations in Table 1 where c0 = 4. In the solutions
obtained by the CA-FA algorithm, we have one arc at the
breakpoint in the following data configurations in Table 1:
r = 1, c0 = 4, with c1 = 12 and c1 = 16. Consequently, we
cannot assess the local optimality of the solutions obtained
by the CA-FA in these two cases. For the solutions obtained
by the CCA algorithm, we have one arc at the breakpoint in
the following data configuration in Table 1: r = 1, c0 = 4
and c1 = 12.

We gained significant improvements by applying
TB_CCA. In both the homogeneous and heterogeneous
cases, average reductions from the local optima provided
by CCA are 4.2% and 4.9%, respectively. Tables 1 and 2
clearly show that TB_CCA outperforms CA-FA in terms of
solution quality. Average reductions from the solution pro-
vided by CA-FA are 6.3% and 7.1% for the homogeneous
and heterogeneous cases, respectively, and up to 13.2%
in the latter case. This improvement in solution quality,
however, requires an increased computational time. We per-
formed TB_CCA up to a maximum of 100 iterations without
improvement in the best found solution. For these instances,
algorithms CA-FA and CCA took less than 10 s, while
TB_CCA required about 100 s of CPU time.

The second group of data instances consists of four larger
networks with different topologies. Table 3 summarizes the
characteristics of the networks considered. These networks
were used by Resende and Ribeiro [22] in the context of pri-
vate virtual circuit routing. For these instances, we considered
a traffic demand between every origin-destination pair equal
to 1, a ratio c1/c0 equal to 4, and the parameter γ set to 50%.

Table 4 displays the results for the second group of
instances. The instances are identified in the first column. As

TABLE 4. Results for the second group of instances.

Reductions (%)

Instance IS CA-FA CCA TABU r(IS) r(CA-FA) r(CCA) LB

att 183.05 172.44 172.44 168.34 10.1 2.8 2.8 145.26
fr250 176.83 148.85 148.85 147.16 28.4 1.6 1.6 104.62
fr500 329.21 277.53 277.53 274.67 27.3 1.4 1.4 198.50
hier50 128.60 122.45 121.84 119.27 9.9 3.4 2.7 94.17

140 NETWORKS—2008—DOI 10.1002/net

in Tables 1 and 2, the following columns display solution val-
ues for each algorithm, reductions provided by TB_CCA, and
lower bounds. Given the network sizes, we ran TB_CCA up to
a maximum of 10 iterations without improvement in the best
found solution. On the instances fr250 and fr500 (which are
the most time consuming), TB_CCA required about one hour
of CPU time. Even by performing only a maximum of 10 iter-
ations without improvement, TB_CCA obtained significant
reductions for the four instances.

6. CONCLUDING REMARKS AND EXTENSIONS

We have presented and analyzed heuristic methods for a
piecewise convex multicommodity flow problem. The meth-
ods are based on a cycle-canceling approach that subsumes
the classical CA-FA method, in the sense that it can improve
the best solution found by CA-FA which is not necessar-
ily a local minimum. We have shown that the nonconvex
nature of the arc cost functions does not alter the convergence
properties of the cycle-canceling algorithm. We proposed a
tabu search algorithm to explore the solution space beyond
the first local optimum. The two-phase framework of each
iteration leads to two kinds of cycling for which we used
two distinct memory structures. A medium-term memory pre-
vents the search from being blocked in between two subsets
over each of which the objective function is convex. It restricts
an arc to be chosen for guiding the search in the first phase
for tabu tenure iterations. A short-term memory prevents the
local optimization in the second phase from returning to the
local optimum visited in the preceding iteration. Our main
interest in conducting numerical experiments was to ver-
ify that the tabu search algorithm can significantly improve
feasible solutions obtained by a single local optimization pro-
cedure. Some important extensions of this approach include
the development of diversification strategies, and of heuris-
tic rules to speed up the search, such as move estimations,
candidate lists and neighborhood reduction (see for example
Ribeiro and Souza [23]).

Acknowledgments

The authors are grateful to Walid Benameur for his con-
structive comments and suggestions which helped us to
improve the paper significantly.

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows:
Theory, algorithms and applications, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1993.

[2] F. Barahona and E. Tardos, Note on Weintraub’s minimum-
cost circulation algorithm, SIAM J Computing 18 (1989),
579–583.

[3] D.P. Bertsekas and R.G. Gallager, Data networks, Prentice-
Hall, Englewood Cliffs, New Jersey, 1987.

[4] T.G. Crainic, M. Gendreau, and J.M. Farvolden, A simplex-
based tabu search method for capacitated network design,
INFORMS J Computing 12 (2000), 223–236.

[5] R. Fletcher, Practical methods of optimization, Uncon-
strained optimization, John Wiley & Sons, New York,
1987.

[6] B. Gavish and K. Altinkemer, Backbone network design
tools with economic tradeoffs, ORSA J Computing 2 (1990),
236–252.

[7] B. Gavish and I. Neuman, A system for routing and capac-
ity assignment in computer communications networks, IEEE
Trans Commun 37 (1989), 360–366.

[8] B. Gendron, T.G. Crainic, and A. Frangioni, “Multicom-
modity capacitated network design”, Telecommunications
network planning, P. Soriano and B. Sansò (Editors), Kluwer,
1999, pp. 1–19.

[9] M. Gerla and L. Kleinrock, On the topological design of dis-
tributed computer networks, IEEE Trans Commun 25 (1977),
48–60.

[10] M. Gerla, J.A.S. Monteiro, and R. Pazos, Topology design
and band with allocation in ATM nets, IEEE J Selected Areas
Commun 7 (1989), 1253–1261.

[11] I. Ghamlouche, T.G. Crainic, and M. Gendreau, Cycle-based
neighborhoods for fixed-charge capacitated multicommodity
network design, Oper Res 51 (2003), 655–667.

[12] F. Glover, Tabu search – Part I, ORSA J Computing 1 (1989),
190–206.

[13] F. Glover, Tabu search – Part II, ORSA J Computing 2 (1990),
4–32.

[14] M. Klein, A primal method for minimal cost flows with
applications to the assignment and transportation problems,
Manag Sci 14 (1967), 205–220.

[15] H.P.L. Luna and P. Mahey, Bounds for global optimization
of capacity expansion and flow assignment problems, Oper
Res Lett 26 (2000), 211–216.

[16] P. Mahey, A. Benchakroun, and F. Boyer, Capacity and
flow assignment of data networks by generalized Benders
decomposition, J Global Optimization 20 (2001), 173–193.

[17] P. Mahey, A. Ouorou, L. LeBlanc, and J. Chifflet, A new
proximal decomposition algorithm for routing in telecom-
munication networks, Networks 31 (1998), 227–238.

[18] P. Mahey and M.C. de Souza, Solving multicommodity flow
problems with separable piecewise convex costs, Research
Report LIMOS RR 04-09, Université Blaise Pascal, France,
June 2004. Available at http://www.isima.fr/limos/publi/RR-
04-09.pdf.

[19] P. Mahey and M.C. de Souza, Local optimality conditions
for multicommodity flow problems with separable piecewise
convex costs, Oper Res Lett 35 (2007), 221–226.

[20] A. Ouorou and P. Mahey, A minimum mean cycle cancelling
method for nonlinear multicommodity flow problems, Eur
J Oper Res 121 (2000), 532–548.

[21] A. Ouorou, P. Mahey, and J.P. Vial, A survey of algorithms
for convex multicommodity flow problems, Manag Sci 46
(2000), 126–147.

[22] M.G.C. Resende and C.C. Ribeiro, GRASP with path-
relinking for private virtual circuit routing, Networks 41
(2003), 104–114.

[23] C.C. Ribeiro and M.C. de Souza, Tabu search for the Steiner
problem in graphs, Networks 36 (2000), 138–146.

[24] A. Weintraub, A primal algorithm to solve network flow
problems with convex costs, Manag Sci 21 (1974), 87–97.

NETWORKS—2008—DOI 10.1002/net 141

